Influences of electric field on living cells in a charged water-in-oil droplet under electrophoretic actuation.
نویسندگان
چکیده
We experimentally investigate the effects of high electric field on living cells inside a charged droplet under electrophoretic actuation. When an aqueous droplet suspended in a dielectric liquid contacts with electrified electrode, the droplet acquires charge. This charged droplet undergoes electrophoretic motion under strong electric field (1-3 kV/cm), which can be used as a droplet manipulation method in biomicrofluidic applications. However, because strong electric field and use of dielectric oil can be a harmful environment for living cells, the biological feasibilities have been tested. Trypan blue test and cell growth test have been performed to check the viability and proliferation of cells in a droplet under various electric field strengths and actuation times. We have not observed any noticeable influence of electric field and silicone oil on the viability and proliferation of cells, which indicates that electrophoresis could be safely used as a manipulation method for a droplet containing living biological system.
منابع مشابه
Study of leaky dielectric droplet behavior under an electric field: effect of viscosity and electric conductivity ratios
In this research, hydrodynamic behavior of a leaky dielectric droplet under an electric field is simulated. The level set method is used for interface tracking and the ghost fluid method is used for modeling discontinuous quantities at interface. Using Taylor’s leaky dielectric model, electric field and electric force at the interface is calculated. Simulation results show the droplet deformati...
متن کاملA novel actuation method of transporting droplets by using electrical charging of droplet in a dielectric fluid.
We evaluate the feasibility of manipulating droplets in two dimensions by exploiting Coulombic forces acting on conductive droplets immersed in a dielectric fluid. When a droplet suspended in an immiscible fluid is located near an electrode under a dc voltage, the droplet can be charged by direct contact, by charge transfer along an electrically conducting path, or by both mechanisms. This proc...
متن کاملNovel Parallelized Electroporation by Electrostatic Manipulation of a Water-in-Oil Droplet as a Microreactor.
Electroporation is the most widely used transfection method for delivery of cell-impermeable molecules into cells. We developed a novel gene transfection method, water-in-oil (W/O) droplet electroporation, using dielectric oil and an aqueous droplet containing mammalian cells and transgene DNA. When a liquid droplet suspended between a pair of electrodes in dielectric oil is exposed to a DC ele...
متن کاملScreened electrostatics of charged particles on a water droplet.
We study the electrostatic properties of charged particles trapped at an interface in a water-in-oil microemulsion. The electrostatic potential and the counterion distribution in the water droplet are given in terms of the ratio of the Debye screening length kappa(-1) and the droplet radius R. In the limit R-->infinity we recover the well-known results for a flat interface. Finite-size correcti...
متن کاملDielectrophoretic effect of nonuniform electric fields on the protoplast cell
In recent years, dielectrophoresis based microfluidics systems have been used to manipulate colloids, inert particles, and biological microparticles, such as red blood cells, white blood cells, platelets, cancer cells, bacteria, yeast, microorganisms, proteins, DNA, etc. In the current study the governing electric potential equations have been solved in the presence of cell for the purpose of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomicrofluidics
دوره 5 4 شماره
صفحات -
تاریخ انتشار 2011